高速加工技术随着数控加工设备与高性能加工刀具技术的发展而日益成熟,极大地提高了模具加工速度,减少了加工工序,缩短甚至消除了耗时的钳工修复工作,从而大大地缩短了模具的生产周期。模具的高速加工技术逐渐成为我国模具工业技术改造最主要的内容之一。什么是高速加工?高速加工与传统加工在加工工艺上有什么区别?高速加工对加工设备、刀具、夹具及相应的CAD/CAM系统提出了什么特殊的要求?高速加工有哪些技术优势?这些一直是我国模具行业面临的主要问题。 英国Delcam公司是世界上最早致力于高速加工工艺及相应CAD/CAM技术研究的专业CAD/CAM集成系统开发商之一。该公司也是世界上唯一拥有大型模具加工车间的CAD/CAM软件系统开发商。Delcam公司模具车间自1985年购进多台BriageportVF1000高速加工中心,又于1995年引进行程为6m的Mecof5轴联动高速加工中心,以进一步加强高速加工工艺及CAM系统的研究。1999年3月又成功地举办了欧洲首届HSM技术研讨会暨HSM现场加工展示会,来自世界各地的100多位专家介绍了各自的经验。 高速加工技术在我国刚刚起步,众多企业非常关注高速加工的发展及在模具行业的应用,以及高速加工的工艺特点,高速加工对设备、刀具的特殊要求以及高速加工对CAD/CAM系统的特殊要求。故将DelcamHSM技术研讨会暨HSM现场加工展示会的资料整理成文,希望与我国从事模具高速加工的工程技术人员交流。 关于高速加工的定义 60多年前,Salomon提出高速加工的概念,并对高速加工进行了深入的研究,其研究成果表明:随着切削线速度的增加,温度及刀具磨损会剧烈增加,当切削线速度达到某临界值时,切削温度及切削力会减小,后又随着切削速度的增加而急剧增加。从图1可看出,以刀具磨损的切削力为限制条件,前一个低于该值的区域是传统加工,后一个低于该值的区域为高速加工。由此也可看出,不同材料有不同的加工临界值,有其高速加工的特定范围。刀具材料与质量是高速加工最主要的限制条件之一,故高速加工不仅决定于主轴速度与刀具直径,还与所切削的材料、刀具寿命及加工工艺等综合因素有关。 高速加工是缘起自航空铝合金材料零件的加工,高水平合金涂层刀具的寿命不是主要的限制因素。高速加工主要受设备主轴速度及材料熔点的限制,一般主轴速度为50000~60000r/min或更高。本文主要关注塑料模具、压铸模具、冲压模具及锻模等用的合金模具钢的高速加工,这种材料的硬度一般超过洛氏50度,故高速加工的限制因素主要是刀具寿命,而非铝加工中的主轴速度。对于小型模具细节结构的加工,主轴速度可达40000r/min以上,而大型汽车覆盖件模具的加工,一般主轴速度12000r/min以上的加工即可称为高速加工。 高速加工的分类及优势 Delcam高速加工的研究表明,高速加工按其目的而言应分为两类,即以实现单位时间去除材料量最大为目的的高速加工,和以实现高质量加工表面与细节结构为目的的高速加工。任何模具的高速加工都是这两类技术的综合运用。相对而言,后者因极大地减少了钳工抛光、修复时间,减少甚至消除了部分工序,因而大大缩短了模具的生产周期。 与传统加工方式相比,高速加工(HSM)的优势如下: 高速加工提高了模具加工的速度 对于精加工,从材料去除速度而言,高速加工比一般加工快四倍以上——尽管高速加工采取了非常小的进给速度与切深,对粗加工而言高速加工可理解为45m3/min的切削量。 使模具修复过程变得更加方便 模具在使用过程中往往需要多次修复,以延长使用寿命,过去主要是靠电加工来完成,如果采用高速加工可以更快地完成该工作,而且可使用原NC程序,无需重新编制,且能做到精确无误。 高速加工(HSM)对机床及刀具的要求 高速加工对机床的要求 主轴速度应能达到12000~40000r/min; 进给速度应达40~60m/min; 快速移动速度达90m/min;加速度为1g;高刚性的机械结构; 高稳定、高刚度、冷却良好的高速主轴; 精确的热补偿系统;高速处理能力的控制系统(线性插补5-20Microns或NURBS插补功能);具有预处理能力的控制系统。 高速加工对刀具及装夹的要求刀夹、刀具的加速度小于3g;刀具的径向跳动小于0.015mm;刀长一般小于刀具直径的4倍。 高速加工(HSM)对CAM系统的要求 高速加工有着不同于传统加工的特殊的加工工艺要求,而数控加工的数控指令包含了所有的工艺过程,故应用于高速加工的数控自动编程系统——CAM系统必须能够满足相应的特殊要求。 CAM系统应具有很高的计算编程速度 高速加工中采用非常小的进给量与切深,故对NC程序的要求比对传统系统的NC程序要求要严格得多,要求计算速度要快且方便、节约编程时间等。另外,快的编程速度使操作人员能够对多种加工工艺策略进行比较,以便采取最佳的工艺方案,并对刀具轨迹进行编辑、优化,以达到最佳的加工效率。 程自动防过切处理能力及自动刀柄干涉检查 高速加工以高出传统加工近10倍的切削速度加工,一旦发生过切,其后果不堪设想,故CAM系统必须具有全程自动防过切处理能力。传统的曲面CAM系统是局部加工的概念,极容易发生过切现象,一般都是靠人工选择干预的办法来防止,很难保证过切防护的安全性,只有通过新一代的、智能化的、面向对象的CAM系统,才能实现防过切处理全部由系统自动完成,才能真正保证其安全性。 高速加工的重要特征之一就是能够使用较小直径的刀具加工模具的细节结构。系统能够自动提示最短夹刀长度并自动进行刀具干涉检查,这对于高速加工非常重要。 进给率优化处理功能 为了能够确保最大的切削效率,并保证在高速切削时加工的安全性,应根据加工瞬时余量的大小,由CAM系统自动对进给率进行优化处理。 符合高速加工要求的丰富的加工策略 与传统方式相比,高速加工对加工工艺走刀方式有着特殊要求,因而要求CAM系统能够满足这些特定的工艺要求: 应避免刀具轨迹中走刀方向的突然变化,以避免因局部过切而造成刀具或设备的损坏。 应保持刀具轨迹的平稳,避免突然加速或减速。 下刀或行间过渡部分最好采用斜式下刀或圆弧下刀,避免垂直下刀直接接近工件材料。 行切的端点采用圆弧连接,避免直线连接。 除非情况必须如此,否则仍应避免全力宽切削。 残余量加工或清根加工是提高加工效率的重要手段,一般应采用多次加工或采用系列刀具从大到小分次加工,直至达到所需尺寸,避免用小刀一次加工完成。 刀具轨迹编辑优化功能非常重要,应避免多余空刀,可通过对刀具轨迹的摄像、复制、旋转等操作来避免重复计算。 刀具轨迹裁剪修复功能也很重要,可通过精确裁剪减少空刀提高效率;也可用于零件局部变化编程,仅需编辑修改边际,无需对整个模型重新编程。 高速加工对编程人员的要求与编程方式的改变 采用高速加工设备之后,对编程人员的需求量将会增加,因高速加工工艺要求严格,过切保护更加重要,故需多花时间对NC指令进行仿真检验。一般而言,高速加工编程时间比普通加工编程时间要长得多,然而却大大缩短了加工时间。为了保证高速加工设备足够的使用率,需配置更多的CAM人员。 传统CAD/CAM中,NC指令的编制是由远离加工现场的CAD/CAM工程师来完成的,因编程与加工地点分离,往往因编程人员对现场条件及加工工艺不够清楚而需要对NC指令进行反复检验与修改,影响正常使用。随着CAM系统智能化水平的提高,已经出现了新一代独立运行的智能化的CAM专业系统,如DELCAM公司的PowerMILL,其主要特点是面向对象的实体加工方式,而非传统的曲面局部加工方式。只需输入并选择加工工艺,即可自动完成编程操作。编程的复杂程度与零件的复杂程度无关,只与加工工艺有关,因而非常易于掌握,只需短时间培训即可掌握使用。在欧美发达国家,为了充分发挥NC设备操作人员的优势,缩短加工时间间隔,机侧编程已经成为逐渐流行的发展趋势? (责任编辑:) |